Practice Engine SDK
Read me
The Practice Engine Software Development Kit (SDK) allows you to integrate and automate applications and data from Practice Engine using a modern SDK experience.
Previously we relied upon direct manipulation of your Practice Engine database within SQL Server. This approach is still possible, although many firms and applications need a more sophisticated way to work with Practice Engine. The new SDK technologies covered in this document outline 3 new technologies which have been added to Practice Engine.
These technologies provide a richer experience and leverage all the code and logic contained within Practice Engine. This helps to ensure values are valid and all associated tables are updated properly. This does require using a .Net development language such as C# or VB.Net. These higher-level languages are more capable, easier and faster than performing the same operations directly in SQL Server scripts.

Practice Engine Extensibility
Practice Engine has several extensibility points. The first is the custom SQL Server Stored Procedures. In versions prior to 9.3 this was accomplished by looking for a convention based match in each stored procedure. At the top of every PE stored procedure it started with a check to see if a “client_” version of the stored procedure existed. If so, it would execute that and return its results instead of its own logic.
In version 9.1 and higher, we added a Custom Razor View Engine. This allows custom or tweaked pages to exist within the application, and persist through upgrades. During the testing of each upgrade, each custom page must be reviewed. If you are interested in this, please check the document PE Custom View Engine which has details and examples of various customizations which are possible.
In Version 9.3, we changed the SQL Stored Procedure logic to be managed centrally in the application. This removes an error message that every stored procedure would create in SQL Server when it tried to find an object that does not exist. It also reduces the overall load in SQL Server, and is much easier to maintain versions of stored procedures and replace the active version at will.

Practice Engine WebApi
Starting with Practice Engine 9.3, a new help section is embedded within the application to help you learn about the WebApi calls which are available. The WebApi calls are the exact same web calls that our application makes when running in your browser, which means you gain full parity with what is possible in the application and what you can execute. This also means they have more testing, validations and logic built directly into them.
To consume our WebApi there are only 2 things you must do:
1. Create an Application Id and Application Key in the Practice Engine Security Interface
2. Install the PracticeEngine.WebApi nuget package into your Visual Studio application.
The entire WebApi with nearly 500 functions and growing is organized and documentation is built into the application. Just open your web browser to http(s)://your-practiceengine-site/ApiHelp.
[bookmark: _GoBack]Here is a simple block of code that creates a connection to the PE WebApi with a secure APPId and APP Key, then makes 1 call to get the current user’s Staff information, and finally prints the Staff Name. In total this is 7 lines of code.
static void Main()
{
// 1. Variable where the Practice Engine App is Running
var apiBaseAddress = "http://localhost:56300/V9/";
// 2. Create a Handler, passing in the AppId and App Key
var handler = new PE.ApiKey.PEApiKeyHandler(
 "4d53bce03ec34c0a911182d4c228ee6c", // APPID
 "A93reRTUJHsCuQSHR+L3GxqOJyDmQpCgps102ciuabc=" // APPKey
);
// 3. Create standard Http Client with the Handler
var peClient = HttpClientFactory.Create(handler);
// 4. Call the StaffMember/Me function to see who you have logged in as
var task = peClient.GetStringAsync(apiBaseAddress + "api/StaffMember/Me");
// 5. Get the Result
var response = task.Result;
// 6. Convert from JSON
JObject obj = JObject.Parse(response);
// 7. Write out your Name from the PEStaff Object that was Returned
Console.WriteLine(obj.Property("StaffName").Value);

}

Practice Engine Api
In addition to the Web Api, we can provided a clean way to consume our services directly in your application. While not complicated, it does require understanding Unit of Work and Factory patterns, and Interfaces. If you are a developer who is familiar with these terms and interested in consuming our services directly in your application for maximum performance, please contact our development team for more information.
